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Abstract-We derive exact results for overall moduli of multiphase piezoelectric layered media.
Specific formulae are given for elastic, piezoelectric and dielectric constants together with thermal
stress and pyroelectric coefficients in terms of phase moduli and volume fractions. The constituent
layers and the composite aggregate are assumed to be orthorhombic of class 2 mrn. The method of
solution simply follows from the observation that under certain homogeneous loadings, a number
of local fields are constant from layer to layer. This permits the determination of the full set of
effective moduli. Proofs that guarantee that these solutions comply with the general connections of
composites with cylindrical microgeometries are given. One of the possible applications can be
directed to media composed of curvilinearly anisotropic layers. © 1997 Elsevier Science Ltd. All
rights reserved.

I. INTRODUCTION

Piezoelectric composites have attracted wide applications in electromechanical devices and
in smart material systems (Smith, 1989, 1991). The determination of the overall physical
and mechanical properties of piezoelectric composites in terms of phase moduli, volume
fractions and geometry is an important issue in the designing and manufacturing process.
Various types of composites have been considered in the literature. For example, Chen
(1994) derived simple formulae for estimates of the overall thermoelectroelastic moduli of
fibrous composites (1-3 connectivity) with the self-consistent and Mori-Tanaka methods.
Avellaneda and Swart (1994) calculated the effective moduli and electro-acoustic per­
formance of 1-3 piezocomposites. Dunn and Taya (1993a, b) examined piezoelectric com­
posites containing ellipsoidal inhomogeneities. In addition, explicit results are given for the
overall moduli of multiphase platelet-reinforced composites (Chen, 1996). Layered media,
the 2-2 connectivity type, are another important class of engineering materials which are
extensively used in multilayer ceramic capacitors and actuators (Newham and Ruschau,
1993). The objective of this work is to derive the exact effective moduli of multiphase
layered composites.

We consider a layered medium consisting of many perfectly bonded layers which are
orthorhombic of class 2 mm (Nye, 1957), that is the effective law is invariant under a
reflection about the Xt-X3 and XrX3 planes. We assume that the medium is constructed so
that it can be regarded as macroscopically orthorhombic ofthe same class. No local or free
edge effects are considered in the analysis. The method of solutions follows from the fact
that under certain homogeneous loadings the exterior part of the stress tensor, the interior
part of the strain tensor (Hill, 1972), the normal components of the electric displacement
vector and the tangential components of electric field are constant throughout the medium.
This constitutes spatially uniform fields from layer to layer. In particular, three of the six
stress components, three of the six strain tensors and one of the three electric displacement
components together with two of the three electric fields can be arbitrarily assigned. The
remaining fields, only piecewise constant throughout, could be determined by rearranging
the constitutive equations. The overall moduli are then obtained via the mean fields by
averaging over the composite medium. Explicit solutions for the effective moduli, including
nine elastic constants, five piezoelectric coefficients and three dielectric constants, together
with three thermal stress tensors and one pyroelectric coefficient, are given for two different
types of layered media; one consists of layers in which the material preferential axis, the X3
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axis, is placed perpendicular to the plane of the layers, the other is arranged so that it is
parallel to the plane. Both results are, ofcourse, applicable to the subclasses oforthorhombic
symmetry and to pure elasticity. The solutions of the latter system are shown to exactly
satisfy a number of exact connections existed for composites with cylindrical micro­
geometries.

A layered aggregate is known as one of the few composite geometries that are amenable
to exact solutions for the effective moduli. Earlier studies have been primarily focused on
the solutions of effective elastic moduli together with their thermal properties, see, for
example, Postma (1955), Pagano (1974), Chou and Carleone (1974) and a recent paper by
Norris (1990). The work of Grekov et al. (1987) seemed to be the first relevant work in
examining the effective behavior of two-phase lamellar piezoelectric systems with tetragonal
or higher symmetry. Related results on two-phase media were also given by Benveniste and
Dvorak (1992) for transversely isotropic layers.

The plan of this work is as follows. We first review some basic equations for the considered
systems. The key formulation is outlined in Section 2. Next, we present explicit results for
the effective moduli of the considered layered media and examine the consistency with the
exact connections. In closing we address some possible extensions of the present results.

2. PRELIMINARIES

The constitutive relation of a linearly piezoelectric medium can be written in the form
(see for example, Tiersten 1969) :

{

a lj : LijkIGkl-ekljEk -),;/),

D, - elkIGkl+"ikEk-q/),

(1)

where aij is the stress tensor, Glj the strain tensor, D, the electric displacement vector, E; the
electric field and (J the uniform temperature change. L ljkl are the elastic moduli measured in
a constant electric field; "Ij are the dielectric constants measured at constant strain; eijk are
the piezoelectric constants; Aij are the linear thermal stress tensors; ql are the pyroelectric
coefficients. The material constants L, e, " are, respectively fourth-rank, third-rank, and
second-rank tensors, which satisfy the symmetry relations

(2)

so that L ljkl, eijk and "Ij admit, at most, twenty one, eighteen and six independent components,
respectively. If UI and cjJ are the elastic displacement vector and electric potential, the strain
and electric fields are given by

(3)

It is convenient to write eqn (1) in a matrix notation. This can be achieved by using the
following convention: replace the first two suffix by a single one running from 1 to 6, and
the last two in the same way, according to the following correspondence

tensor notation 11 22 33 23,32 31,13 12,21

matrix notation 2 3 4 5 6.

Accordingly, eqn (I) can be written in the form

{

t1 = LB-eTE-.W,

D = eB+JCE-q(J,

where

(4)
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Um = uij for m = 1,2,3,4,5,6, i,j = 1,2,3,

em = eij for i = j, m = 1,2,3,

em = 2eij for i =F j, m = 4,5,6,

Lmn = L ijkl for i,j, k, I = 1,2, 3 ; m, n = 1, ... 6,

e in = eikl for i, k, I = 1,2,3; n = 1, ... 6,

Am = Aij for i,j = 1,2,3; m = 1, ... 6.
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(5)

The moduli L, e, and Ie are then represented by (6 x 6), (3 x 6), and (3 x 3) matrices,
respectively. eT is the transpose ofe and is a (6 x 3) matrix. At interfaces, the traction vector,
the displacement, electric potential and the normal component ofelectric displacement must
be continuous if perfect bonding is assumed. Alternatively, it is known (Hill, 1972) that
these interface conditions are equivalent to the continuities of exterior part of stress (I"
interior part ofstrain 8i, the normal component ofelectric displacement Dn and the tangential
component of electric field E" in which their components are, respectively, defined as

(Ie = n®t1Il+t1Il®n-(n't1Il)n®n,

8 i = (I-n ® n)8(I-n ® n),

Dn = (n®n)D, E, =(I-n®n)E, (6)

where n is the unit normal of any point P on an interface surface Sand 1 is the unit second­
rank tensor. It is helpful to note that for a point P whose normal is along the X3 axis, the
components of't'e and 't'i of a second-order tensor 't' can be expressed by

(7)

In addition, Vn and Vr are two orthogonal components of a vector v, one perpendicular and
one parallel to the surface. In view of the decomposition (6), it follows that 't' = 1'e+1'i and
v = vn+v,.

We now partition (4) into

and rewrite (8) as

[

(Ie] ILl(I, L
3

Dn es

Dr e7

(8)

with the definitions

fJe = Lee8e+Lei8i -leO,

fJi = Lie8e +Lu8i-lio, (9)

(10)
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For stable materials, Land" are symmetric and positive definite, L I , L4, and "I and "4

are thus invertible and it follows that Lz = L3, "3 = "4' Naturally, the matrices eh ez, ...
and eg are not all independent. We can then rearrange (9) to get

[
A] [f.-IBe ee
A - __ ]

(1i LieL~
(II)

In the sequel, we shall write (11) in the form s = Ae+re.

3. EFFECTIVE PROPERTIES OF LAYERED MEDIA

3.1. Layers parallel to the XI-XZ plane
We consider a layered medium in the XI-X2 plane of a Cartesian coordinate consisting

of several bonded layers which are constructed so that the medium can be regarded as
macroscopically orthorhombic of class 2 mm. We assume that the constituent layers are
also orthorhombic ofthe same class. The volume fraction of phase r is denoted by Cr so that
CI + Cz + ... + Cn = I. The objective is to derive the exact results for the effective properties of
the medium; no local or free edge effects are considered. Note that the X3 axis is the common
normal to all layers. In the first step of the formulation, each layer is subjected to a constant
Bi and fie together with a uniform temperature change (} so that 8h 8z, 86' £), £z, (13, (14, (15,

and D3 are uniform throughout the medium. Next, we can assemble each layer together to
form an aggregate in which fie and B; can thus be viewed as external loads, since the interface
conditions are exactly satisfied. We start from (II) to examine the effective behavior of the
aggregate. By simple algebra, the volume averages of the phases are shown to be connected
by

- If - - If -
Be = VJv Be dv = Lc,(Be)" fi; = VJv a; dv = Lcr(a;)"

in which the overbar denotes the volume averaged quantities. By the definition

s = Ae+re,

it follows that

A = Lc,A" r = LCrrr.

(12)

(13)

(14)

Equation (14) is the fundamental result for the solutions of effective moduli.
We now present results for the considered system. The thermoelectroelastic moduli of an

orthorhombic layer with class 2 mm are of the forms:

L I1 LIZ L I3 0 0 0 Al

L 12 L 22 L Z3 0 0 0 Az

L 13 L Z3 L 33 0 0 0 A3
L= , A=

0 0 0 L 44 0 0 0

0 0 0 0 L S5 0 0

0 0 0 0 0 L 66 0

.~[ ~
0 0 0 e 1s

n [KU 0
o ] q~[:J0 0 eZ4 0 ,,= 0 "zz o , (15)

e31 en e33 0 0 0 0 "33
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These are, in total, nine elastic constants, three dielectric permittivities and five pie­
zoelectric constants together with three thermal stress constants and one pyroelectric
coefficient. The above material constants also describe the constitutive relations for an
orthorhombic medium of class mmm, in which all the piezoelectric coefficients are absent.

Now recasting (15) into the form (8), manipulating the matrices according to (II) and
using the volume averaging formulae (14), after some straightforward algebra, one finds
the effective constants as

I I
-=:Ecr -,

L 55 L S5

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

where (jr = L33K33 +e32
3'

This completes all 17 electroelastic moduli. Before we proceed to the results for thermal
stress and pyroelectric coefficients, we observe that there exist a few connections between
the moduli, which may offer alternative expressions for these results. First, from (19) it can
be shown that
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(27)

In addition, from (20) and (22) we find the following identities

LI3e33 -e31 L 33

L 33 "33 +e~3
(28)

Similarly, from (21) and (23) we find

L23e33 -e32L 33

L 33 "33 +e~3
(29)

It is noteworthy that the effective constants L44, L ss, L66 under a constant electric field
take the same form as those for non-piezoelectric media. Also, it is easy to prove that, when
the piezoelectric coefficients are absent, the moduli will reduce to those purely elastic solids
(Postma, 1955). In addition, for the case of transversely isotropic constituents the results
(16)-(26) are identical to the effective constants of platelet reinforced piezoelectric com­
posites estimated by the self-consistent and Mori-Tanaka methods (Chen, 1996). This is
an interesting and surprising outcome. This coincidence may be explained by the fact that
the sharp edged effects of the platelet were neglected, and thus disc-shaped inclusion,
modeled as a very thin oblate spheroid, behaves much like a thin layer.

We now turn to the effective thermal stress constants A1> A2' A3 and pyroelectric coefficient
q3 of the layered aggregate. Setting 0 l' 0 in (142) yields four sets of equations expressing
the effective A and q in terms of L, e, " and the constituent properties. Specifically, the
explicit results are given by

(30)

(31)

(32)

(33)

In deriving the explicit formulae, if use is made of connections (28) and (29), eqns (30)
and (31) could be written in the following forms

(34)

(35)

Again, if constituent layers are transversely isotropic, the results (32)-(35) are exactly
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the same with the effective thermal stress and pyroelectric constants of platelet reinforced
composites estimated by the self-consistent and Mori-Tanaka approximations (Chen,
1996). Equations (30)-(33) indicate that if the thermal stress constant A,3 and pyroelectric
coefficient q3 of the phases vanish, so does the effective constants A,3 and Q3, and in this case
it turns out that Al = I:crA,;, A2 = I:CrA,2.

3.2. Layers parallel to the XI-X3 plane
We now consider another class of layered media in which all constituent layers are

parallel to the XI-X3 plane and normal to the X2 axis. The phase and overall moduli are still
orthorhombic of class 2 mm as described in (15). The composite system may seem akin to
that examined in Section 3.1, however the overall behavior of these two systems is not the
same. The difference is that in the previous system the material preferential axis (the X 3

axis) is placed along the normal of the layers, while in the present section we consider the
case in which the X3 axis is parallel to one direction of the plane. The latter can be regarded
as a special case of fibrous aggregates in which one dimension of the transverse section (the
XI axis) is infinitely extended.

We now derive the effective properties of the system. According to the formulation given
in Section 2, we may let 61- 63' 65' 0'2' 0'4' 0'6 and EI- E3, D3 be constant throughout the
medium so that the continuity conditions are fulfilled. Following the same routes outlined
in Section 3.1, by some simple algebra, we obtain the exact results for the effective properties
of the composite:

1 I 1 1
-=I:cr-, -= I:cr-, (36)
L 66 L~6 L 22 L22

[L
55 el5 ] [L 55 el5 ] [L

44
e T1

[L
44

e T1
24 24

(37)= I:Cr
-KII /

= I:cr
-K22 r 'el5 -K11 el 5 e24 -K22 e24

(38)

(
I:CrL: 2)2

L 22 L r2
L 11 = I:crL; 1 + - I:c ---.!2

I:c _1_ r L 22 '
rLr

22

(
Lr)2I:c _2_3

r L 22 £,2
L I: £' + - I:c~33 = Cr 33 1 r L r '

I:c - 22
r L 22

(39)

(40)

(41)

(42)
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(
1:C _L'I2)(1:C _e32 )

, L~2 ' L~2 L12e32
e31 = 1:c,e31 + 1 -1:c,--,

~ L~2
~c,-,-

L22

(
1:C _L23)(1:C _e32)

, L22 ' L22 L23e32
e33 = 1:c,e33 + -1:c --

1: 1 ' L 22
C'-L'­

22

(43)

(44)

It appears that the effective moduli (36)-(44) are quite different from those given in
Section 3.1 as explained earlier. Further, it is observed that some formulae are formally
similar to the exact properties of fibrous aggregates with equal phase transverse rigidities
in shear (Chen, 1993, eqns 25-31). We shall investigate this further in Section 4.

We now turn to the effective thermal stress tensor and pyroelectric coefficient of the
aggregate. By letting e=F 0 in (142), similar to the step described before, we may express
the effective A. and q in terms of L, e, " and the constituent properties. Specifically, the
nonvanishing results are derived in the forms

( A2 )( L 12 )1:c - 1:c-
1 _ , ' L'22 ' L22 LI2 A2

Al -1:c,A] + I -1:c, ,
~ L 22
~c-, L

22

( A2 )( L 23 )1:c - 1:c-
1 _ , ' L22 ' L22 L23 A2
1\3 - 1:c,A3 + 1 -1:c, ,

~ L22
~c-, L

22

( ).2 )( e32)1:c - 1:c-
, L22 ' L22 e32 A2

q3 = 1:c,q) + 1 -1:c,--.
~ L 22
~c-, L

22

(45)

(46)

(47)

(48)

All the results are derived for orthorhombic phases and can be reduced to their subclasses
or to pure elasticity without difficulty. We remark that when the constituents are restricted
to transversely isotropic and possess the same transverse shear moduli, then we can show
that A] = A2'

4. CONSISTENCY WITH EXACT CONNECTIONS OF FIBROUS AGGREGATES

As mentioned before, the system considered in Section 3.2 can be viewed as a particular
case of fibrous aggregate in which the X3 axis is the fiber direction. It is known that there
exist quite a few exact connections between the effective moduli of fibrous aggregates with
arbitrary transverse geometry (Chen, 1993; Benveniste, 1994a, b). It is then desirable to
investigate whether our results comply with the exact connections. In the literature, most
of the exact connections are established for transversely isotropic constituents about the
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fiber direction. For convenience, we reduce the moduli in (15) to transverse isotropy by the
connections

L 11 = L 22 = k+m, L 12 = k-m, L 13 = L 23 = I, L 33 = n, L44 = L 55 = p,

(49)

where k, I, n, m and p are Hill's (1964) elastic moduli under a constant electric field. To
check the consistency between the results, we briefly recapitulate the exact relationships as
follows. First, when the phases possess equal transverse shear moduli m, seven out of a
total of ten overall moduli of a transversely isotropic composite can be found (Chen, 1993,
eqns 25-31). The results are recorded as

crkrL--
k = kr+m

L_C_r _'

kr+m

crlrL--
1= kr+m,

L_c_r _

kr+m

(50)

(51)

(52)

[L~J2kr+m

CrL-­
kr+m

(53)

and the overall shear modulus is certainly just m itself, the value common to all phases.
Now setting L'66 = mr = m in (36) and (38)-(44) and using the notations defined in (49),
one immediately recognizes that the results in Section 3.2 indeed reduce to the exact moduli
for a composite with equal phase shear moduli. Under the same condition, the effective
thermal terms for the fibrous system were derived by Benveniste (1994a, eqn 68). For
brevity, we shall not record the exact expressions here, but only remark that, by letting
mr = min (45)-(48), after some algebra, it can be shown that our results are exactly reduced
to those found by Benveniste (1994a).

We now tum to the exact connections which involve the remaining three constants,
namely p, el5 and Kilo In this case, the overall symmetry of the composite may correspond
at most to that of an orthorhombic crystal of class 2 mm. For convenience we can write
the associated phase and overall constitutive equations in the forms:

- [pL =
r el5

(54)

The following theorems are shown to be valid for multiphase piezoelectric composites
with cylindrical phase boundaries (Chen, 1993, eqns 33,47)
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--1- - - - - - - --1- - --I - --I - --ILa LALaL I, LaL2 , ••• ,LaLn)Lb Ly(LbL I ,LbLz , , LbLn ) = I,

Lb I Ly(LbL1I ,LbLi l
, ... ,LbL; I )L; I LALJ:j, LaL2 , ,taLn) = I (55)

where the arguments in the brackets denote the phase properties and I is a unit (2 x 2)
matrix. Now substituting (37) and (54) in (55), it is readily seen that eqns (55) are exactly
satisfied. For two-phase media, one may set L, = I and L2 = L; ILb to obtain its corollary
(Chen, 1993, eqn 48)

t; I LALa,Lb)Lb I LALb,La) = I,

Lb I Ly(Lb, La)L; 1LALa,Lb) = I. (56)

Such connections were first found by Milgrom and Shtrikman (1989, eqn 27) and also
derived by Benveniste (1994b, eqn 51) in a slightly different form via different approaches.
Since (56) can be deduced from (55), naturally, the effective moduli (37) still follow the
connection of (56).

Another set of exact relationship was established from the Milgrom-Shtrikman (1989)
compatibility condition. The connection, given by Schulgasser (1992), Benveniste and
Dvorak (1992), and Nan (1993) in the present context, takes the form

L S5 KII elS

L~5 KlI els =0.

L~5 Kit ers

Again, substituting (37d into (57) it can be shown that (57) is satisfied.

(57)

5. NUMERICAL RESULTS

In order to illustrate the theoretical results, we perform a numerical computation for
a two-phase piezoelectric layered aggregate. In practice, an interesting example of this kind
is an isotropic layer combined with a poled piezoceramics (Grekov et al. 1987). In the
numerical study, we consider a medium made ofPZT-7A and Epoxy layers. The properties
of the phases used for calculations are given in Dunn and Taya (1993). In the demonstration,
we assume that the material preferential axis of the PZT-7A is along the perpendicular
direction of the stacking plane, that is the case studied in Section 3.1. Clearly, the overall
properties of the layered aggregate are transversely isotropic. We have correctly checked
that the results reduce to the given properties when the volume concentration of one phase
becomes zero. Typical strain coefficients defined by d3i == -FgdF99 and dh == d31 +d32+d33

are, respectively, illustrated in Figs I and 2, where F is defined by

F=[~ (58)

Lastly, we remark that the results of Section 3.2 are consistent with the numerical
solutions by Grekov et al. (1987) and Dunn and Taya (1993).

6. CONCLUDING REMARKS

We remark that the simple formulation presented above can be extended to a medium
consisting of monoclinic layers. However, the resulting formulae for the effective moduli
will become tedious and the algebra is much more involved. Another extension of the
present results can be directed to layered aggregates in which each layer is curvilinearly
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Fig. I. Effective piezoelectric modulus d" vs the volume fraction ofPZT-7A.
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Fig. 2. Effective piezoelectric modulus d. vs the volume fraction ofPZT-7A.

anisotropic. For example, we may consider a hollow laminated cylinder constituted by
many concentric layers which are cylindrically anisotropic in r, () and z coordinates. The
overall moduli of the laminated cylinder can be found in the same manner simply by letting
GO, Gn GOn U" UrO, Um Eo, Ez and Dr be constant throughout the medium. In particular, one
may directly employ the formulae given in Section 3 to obtain the results by properly
locating the correspondence between x, y, z and r, (), z. Similarly, this method is also
applicable to a spherically layered medium containing spherically anisotropic (r, (), 4J) layers
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(Christensen, 1994). In this case, the fields eo, e"" eo"" (1n (1rO, (1r"', Eo, E", and Dr are assumed
to be constant and the results can be directly obtained by a similar correspondence.

We finally remark that the present explicit expressions for the exact thermoelectroelastic
moduli of layered piezoelectric media provide a useful tool for technological applications.
In addition, they complement the existing results for piezoelectric composites and serve a
check for exact relationships between the effective and phase moduli of the composite.
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